The application of 3D representations in face recognition
نویسندگان
چکیده
Most current psychological theories of face recognition suggest that faces are stored as multiple 2D views. This research aims to explore the application of 3D face representations by means of a new paradigm. Participants were required to match frontal views of faces to silhouettes of the same faces. The formats of the face stimuli were modified in different experiments to make 3D representations accessible (Experiments 1 and 2) or inaccessible (Experiment 3). Multiple 2D view-based algorithms were not applicable due to the singularity of the frontal-view faces. The results disclosed the application and adaptability of 3D face representations. Participants can readily solve the tasks when the face images retain the information essential for the formation of a 3D face representations. However, the performance substantially declined when the 3D information in faces was eliminated (Experiment 3). Performance also varied between different face orientations and different participant groups.
منابع مشابه
Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کامل3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملRobust Geometrically Invariant Features for 2 D Shape Matching and 3 D Face Recognition
Invariant features play a key role in object and pattern recognition studies. Features that are invariant to geometrical transformations offer succinct representations of underlying objects so that they can be reliably identified. In this dissertation, we introduce a family of novel invariant features based on Cartan’s theory of moving frames. We call these new features summation invariants. Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 51 شماره
صفحات -
تاریخ انتشار 2011